3.444 \(\int \frac{x^5}{(8 c-d x^3)^2 (c+d x^3)^{3/2}} \, dx\)

Optimal. Leaf size=85 \[ \frac{2 \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{243 c^{3/2} d^2}+\frac{8}{27 d^2 \left (8 c-d x^3\right ) \sqrt{c+d x^3}}-\frac{2}{81 c d^2 \sqrt{c+d x^3}} \]

[Out]

-2/(81*c*d^2*Sqrt[c + d*x^3]) + 8/(27*d^2*(8*c - d*x^3)*Sqrt[c + d*x^3]) + (2*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[
c])])/(243*c^(3/2)*d^2)

________________________________________________________________________________________

Rubi [A]  time = 0.0622635, antiderivative size = 85, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.185, Rules used = {446, 78, 51, 63, 206} \[ \frac{2 \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{243 c^{3/2} d^2}+\frac{8}{27 d^2 \left (8 c-d x^3\right ) \sqrt{c+d x^3}}-\frac{2}{81 c d^2 \sqrt{c+d x^3}} \]

Antiderivative was successfully verified.

[In]

Int[x^5/((8*c - d*x^3)^2*(c + d*x^3)^(3/2)),x]

[Out]

-2/(81*c*d^2*Sqrt[c + d*x^3]) + 8/(27*d^2*(8*c - d*x^3)*Sqrt[c + d*x^3]) + (2*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[
c])])/(243*c^(3/2)*d^2)

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^5}{\left (8 c-d x^3\right )^2 \left (c+d x^3\right )^{3/2}} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{x}{(8 c-d x)^2 (c+d x)^{3/2}} \, dx,x,x^3\right )\\ &=\frac{8}{27 d^2 \left (8 c-d x^3\right ) \sqrt{c+d x^3}}+\frac{\operatorname{Subst}\left (\int \frac{1}{(8 c-d x) (c+d x)^{3/2}} \, dx,x,x^3\right )}{9 d}\\ &=-\frac{2}{81 c d^2 \sqrt{c+d x^3}}+\frac{8}{27 d^2 \left (8 c-d x^3\right ) \sqrt{c+d x^3}}+\frac{\operatorname{Subst}\left (\int \frac{1}{(8 c-d x) \sqrt{c+d x}} \, dx,x,x^3\right )}{81 c d}\\ &=-\frac{2}{81 c d^2 \sqrt{c+d x^3}}+\frac{8}{27 d^2 \left (8 c-d x^3\right ) \sqrt{c+d x^3}}+\frac{2 \operatorname{Subst}\left (\int \frac{1}{9 c-x^2} \, dx,x,\sqrt{c+d x^3}\right )}{81 c d^2}\\ &=-\frac{2}{81 c d^2 \sqrt{c+d x^3}}+\frac{8}{27 d^2 \left (8 c-d x^3\right ) \sqrt{c+d x^3}}+\frac{2 \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{243 c^{3/2} d^2}\\ \end{align*}

Mathematica [C]  time = 0.0236642, size = 68, normalized size = 0.8 \[ -\frac{2 \left (\left (d x^3-8 c\right ) \, _2F_1\left (-\frac{1}{2},1;\frac{1}{2};\frac{d x^3+c}{9 c}\right )+12 c\right )}{81 c d^2 \left (d x^3-8 c\right ) \sqrt{c+d x^3}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^5/((8*c - d*x^3)^2*(c + d*x^3)^(3/2)),x]

[Out]

(-2*(12*c + (-8*c + d*x^3)*Hypergeometric2F1[-1/2, 1, 1/2, (c + d*x^3)/(9*c)]))/(81*c*d^2*(-8*c + d*x^3)*Sqrt[
c + d*x^3])

________________________________________________________________________________________

Maple [C]  time = 0.01, size = 908, normalized size = 10.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(-d*x^3+8*c)^2/(d*x^3+c)^(3/2),x)

[Out]

1/d*(2/27/d/c/((x^3+1/d*c)*d)^(1/2)+1/243*I/d^3/c^2*2^(1/2)*sum((-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(
-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/3)+I*3^(1/2)*(-
d^2*c)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)/(d*x^
3+c)^(1/2)*(I*(-d^2*c)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^(1/3)*_alpha*d-
(-d^2*c)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-
d^2*c)^(1/3))^(1/2),-1/18/d*(2*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c
*d-3*(-d^2*c)^(2/3)*_alpha-3*c*d)/c,(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c
)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*d-8*c)))+8/d*c*(-2/243/d/c^2/((x^3+1/d*c)*d)^(1/2)-1/243/d/c^2*(d*x^3+c)^(
1/2)/(d*x^3-8*c)-1/1458*I/d^3/c^3*2^(1/2)*sum((-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-d^2*c)^(1/3)+(-d^
2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/3)+I*3^(1/2)*(-d^2*c)^(1/3)))^(1/
2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-d^
2*c)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^(1/3)*_alpha*d-(-d^2*c)^(2/3))*El
lipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2
),-1/18/d*(2*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-d^2*c)^(2/3
)*_alpha-3*c*d)/c,(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1/3)))^(1/2)),_
alpha=RootOf(_Z^3*d-8*c)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(-d*x^3+8*c)^2/(d*x^3+c)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.07353, size = 487, normalized size = 5.73 \begin{align*} \left [\frac{{\left (d^{2} x^{6} - 7 \, c d x^{3} - 8 \, c^{2}\right )} \sqrt{c} \log \left (\frac{d x^{3} + 6 \, \sqrt{d x^{3} + c} \sqrt{c} + 10 \, c}{d x^{3} - 8 \, c}\right ) - 6 \,{\left (c d x^{3} + 4 \, c^{2}\right )} \sqrt{d x^{3} + c}}{243 \,{\left (c^{2} d^{4} x^{6} - 7 \, c^{3} d^{3} x^{3} - 8 \, c^{4} d^{2}\right )}}, -\frac{2 \,{\left ({\left (d^{2} x^{6} - 7 \, c d x^{3} - 8 \, c^{2}\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-c}}{3 \, c}\right ) + 3 \,{\left (c d x^{3} + 4 \, c^{2}\right )} \sqrt{d x^{3} + c}\right )}}{243 \,{\left (c^{2} d^{4} x^{6} - 7 \, c^{3} d^{3} x^{3} - 8 \, c^{4} d^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(-d*x^3+8*c)^2/(d*x^3+c)^(3/2),x, algorithm="fricas")

[Out]

[1/243*((d^2*x^6 - 7*c*d*x^3 - 8*c^2)*sqrt(c)*log((d*x^3 + 6*sqrt(d*x^3 + c)*sqrt(c) + 10*c)/(d*x^3 - 8*c)) -
6*(c*d*x^3 + 4*c^2)*sqrt(d*x^3 + c))/(c^2*d^4*x^6 - 7*c^3*d^3*x^3 - 8*c^4*d^2), -2/243*((d^2*x^6 - 7*c*d*x^3 -
 8*c^2)*sqrt(-c)*arctan(1/3*sqrt(d*x^3 + c)*sqrt(-c)/c) + 3*(c*d*x^3 + 4*c^2)*sqrt(d*x^3 + c))/(c^2*d^4*x^6 -
7*c^3*d^3*x^3 - 8*c^4*d^2)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5/(-d*x**3+8*c)**2/(d*x**3+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.12575, size = 103, normalized size = 1.21 \begin{align*} -\frac{2 \,{\left (\frac{\arctan \left (\frac{\sqrt{d x^{3} + c}}{3 \, \sqrt{-c}}\right )}{\sqrt{-c} c d} + \frac{3 \,{\left (d x^{3} + 4 \, c\right )}}{{\left ({\left (d x^{3} + c\right )}^{\frac{3}{2}} - 9 \, \sqrt{d x^{3} + c} c\right )} c d}\right )}}{243 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(-d*x^3+8*c)^2/(d*x^3+c)^(3/2),x, algorithm="giac")

[Out]

-2/243*(arctan(1/3*sqrt(d*x^3 + c)/sqrt(-c))/(sqrt(-c)*c*d) + 3*(d*x^3 + 4*c)/(((d*x^3 + c)^(3/2) - 9*sqrt(d*x
^3 + c)*c)*c*d))/d